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ABSTRACT 

Commercial datasets are often large, relational, and dynamic.  
They contain many records of people, places, things, events and 
their interactions over time.  Such datasets are rarely structured 
appropriately for knowledge discovery, and they often contain 
variables whose meanings change across different subsets of the 
data.  We describe how these challenges were addressed in a 
collaborative analysis project undertaken by the University of 
Massachusetts Amherst and the National Association of Securities 
Dealers (NASD).  We describe several methods for data pre-
processing that we applied to transform a large, dynamic, and 
relational dataset describing nearly the entirety of the U.S. 
securities industry, and we show how these methods made the 
dataset suitable for learning statistical relational models. To better 
utilize social structure, we first applied known consolidation and 
link formation techniques to associate individuals with branch 
office locations.  In addition, we developed an innovative 
technique to infer professional associations by exploiting dynamic 
employment histories.  Finally, we applied normalization 
techniques to create a suitable class label that adjusts for spatial, 
temporal, and other heterogeneity within the data.  We show how 
these pre-processing techniques combine to provide the necessary 
foundation for learning high-performing statistical models of 
fraudulent activity. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – Data 
Mining; I.2.6 [Artificial Intelligence]: Learning 

General Terms 
Algorithms, Measurement, Design, Experimentation. 

Keywords 
Fraud detection, data pre-processing, statistical relational learning, 
normalization, relational probability trees. 

1. INTRODUCTION 
The National Association of Securities Dealers (NASD) is 
charged with overseeing and regulating over 5,000 securities 
firms in the United States.  One primary aim of NASD is to 
prevent and discover securities fraud and other forms of 
misconduct by member firms and their employees, called 
registered representatives, or reps. With over 659,000 reps 
currently employed, it is imperative for NASD to direct its limited 
regulatory resources towards the parties most likely to engage in 
risky behavior in the future. It is generally believed by experts at 
NASD and others that fraud happens among small, interconnected 
groups of individuals [2].  Due to the large number of potential 
interactions between reps, timely identification of persons and 
groups of interest is a sizeable challenge for NASD regulators.  
This work is a joint effort between researchers at the University of 
Massachusetts Amherst (UMass) and staff at NASD to identify 
effective, automated methods for detecting these high-risk entities 
to aid NASD in their regulatory efforts.  

The securities fraud domain, along with other similar domains, 
presents many challenges to knowledge discovery practitioners.  
The NASD dataset is large, containing historical records on over 
3.4 million reps, 360,000 branches and over 25,000 firms. These 
entities also have many rich interactions over time as reps change 
jobs, as they move among branches and firms, and as branches 
and firms change ownership.  In addition, the background rate of 
misconduct varies over time and geography.  

In this paper, we describe our techniques to address each of the 
challenges presented by the NASD dataset.  These techniques 
allow the transformation from raw data to high-performing 
models that are useful for detecting high-risk individuals.  First, 
we utilized standard consolidation and link formation techniques 
as described by Goldberg and Senator [4] to infer branch entities 
from rep employment records.  Using the inferred branch entities, 
we created a new technique for identifying groups of reps, which 
we call tribes. Tribes are groups of reps that move from branch to 
branch together over time.  Finally, we addressed the variability in 
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background rate by creating a normalized class label. A graphical 
representation of this process is shown in Figure 1. 

While the results of the data pre-processing techniques (e.g., 
tribes) are frequently interesting and useful in their own right, we 
believe their true utility lies in the integration of these 
technologies to form a foundation for learning understandable and 
effective models for detection of securities fraud. Without this 
foundation of data pre-processing techniques, any analyses of 
large, dynamic datasets such as the NASD data run the risk of 
being ineffective and potentially impossible. The models we 
present can be used by NASD examiners to rank the risk of future 
misconduct by reps and branches, and these models have the 
added benefit of providing a means to evaluate the efficacy of our 
data pre-processing techniques. 

2. BACKGROUND 
2.1 NASD’s Regulatory Mission 
NASD is the primary private-sector regulator of the securities 
industry in the United States. It is currently responsible for 
overseeing the activities of more than 5,000 brokerage firms, 
170,000 branch offices and 659,000 registered individuals. Since 
1939, NASD has worked under the oversight of the U.S. 
Securities and Exchange Commission (SEC) to regulate all 
securities firms (called broker-dealers) that conduct business with 
the public.  Currently, NASD employs a staff of over 2,500 
employees situated in offices across the country and has an annual 
operating budget of more than $500 million.  

NASD is responsible for maintaining rules that guide all phases of 
the business for each member, starting with the testing, 
registration, and licensing of prospective broker-dealers and 
individuals.  NASD is also responsible for the surveillance, 
examination, and enforcement of regulatory compliance among 
firms. Broker-dealers that are not in compliance with NASD 
regulations are subject to discipline in the form of a bar or 
suspension from the industry, a fine, or possibly other 
enforcement action. In addition, NASD offers opportunities for 
both professional training and investor education.   
In order to ensure compliance among its members, NASD utilizes 
two types of examinations. The first, called a cycle examination, 
happens on a routine basis. The second type of examination, 
called examination for cause, is performed in response to 
complaints or for other specific reasons. Examinations require 
significant time and personnel resources and are critical for 
ensuring the integrity of the markets and safeguarding investors. 
Using both types of examinations, NASD strives for the early 
discovery of securities violations in order to prevent serious harm, 
punish offenders in a timely manner, and swiftly recover 
misappropriated funds.  In addition, examinations can serve to 
prevent future violations by emphasizing the presence of 
regulatory oversight.  

It is imperative for NASD to identify the highest-risk branches 
and reps so that examiner resources can be appropriately 
allocated. NASD examiners currently utilize a number of different 
methods to identify these high-risk entities.  Often these 
approaches involve examining the history of regulatory or 
financial problems for an individual rep or branch. Due to 
dynamics of the marketplace and the inherent difficulty of 
predicting future violations, NASD is continually seeking new 
methods for focusing resources and identifying high-risk entities.  

 
Figure 1: Graphical representation of the knowledge 

discovery process . 

2.2 The Central Registration Depository 
The Central Registration Depository ® (CRD) is a collection of 
records regarding all federally registered firms and individuals, 
including those registered by the SEC, NASD, the states, and 
other authorized regulators such as the New York Stock 
Exchange.  This depository includes key pieces of regulatory data 
such as ownership and business location for firms, and 
employment histories for individuals.  Although the information 
in the CRD is entirely self-reported, errors, inaccuracies or 
missing reports can trigger regulatory action by NASD.  Since 
1981, when the CRD was first created, records on around 3.4 
million individuals, 360,000 branches and 25,000 firms have been 
added to the database.  

Some of the critical pieces of information for NASD’s regulatory 
mission are records of any disciplinary actions, typically called 
disclosures, filed on particular individuals.  These disclosures can 
encompass any non-compliant actions including regulatory, 
criminal, or other civil judicial action.  In addition, disclosures can 
also be in regards to customer complaints or termination 
agreements between firms and individual reps. Additional 
disclosures cover any past financial hazards an individual rep 
might have had such as bankruptcies, bond denials, and liens. The 
disclosure information found in the CRD is one of the primary 
sources of data on past behavior that NASD uses to assess future 
risk and focus their regulatory examinations to greatest effect. 
Disclosure information for individual brokers is freely available to 
the public through NASD’s BrokerCheck system1. In addition to 
disclosures filed by NASD, the BrokerCheck system also contains 
disciplinary information from the SEC, state regulators, New 
York Stock Exchange, the FBI, and any self-reported disclosures 
from the firms themselves.  

Our final analysis utilized data from the CRD for firms, branches, 
reps, and disclosures.  An entity-relation diagram is shown in 
Figure 2 along with counts for each entity appearing in our view 
of the database.  

3. TASK DESCRIPTION 
The primary goal of this work is to develop statistical models that 
combine patterns of past behavior, social structure among reps 
and firms, and the current risk environment to identify branches 
and reps that are at high-risk for future misconduct.  To account 
for the dynamic nature of this process our models are designed to 
predict risk for the near future, given past information. This 
closely matches the scenario faced by NASD. Risk is broadly 
construed and encompasses any behavior that is potentially 
harmful to a member firm or to NASD as a whole.  
                                                                    
1 www.nasdbrokercheck.com 



 

 

 
Figure 2: The entity-relation diagram for the CRD data. 

The best available indicators of risk are the disclosure histories for 
reps and branches.  NASD experts provided us with a weighting 
scheme for different disclosure types. Serious disclosures such as 
regulatory actions were assigned high weight while less serious 
disclosures such as customer complaints are given less weight.  
Since many disclosures with low weight may be as indicative of 
future misconduct as one disclosure with high weight, we 
combine all the disclosure types into a risk score  
In a previous collaboration between UMass and NASD, it was 
shown that the social structure among reps was useful for 
detecting serious misconduct [8].  To better assess the strength of 
this influence among reps, this earlier work was limited to firms 
with fewer than 15 reps. In our current work, we seek to model 
firms of all sizes. Since the largest firms can employ hundreds if 
not thousands of reps, it is necessary to identify the meaningful 
small-scale social relations among many other incidental 
connections within firms. To provide the small-scale social 
structure we are seeking, we target two particular relations: (1) 
branch office affiliations and (2) tribes.  Each firm typically 
spreads its business across many different branch locations. The 
branch locations must be reported to NASD; however, until 
recently firms were not required to report detailed branch 
affiliations for their reps. To identify branch affiliations, we 
utilized a standard consolidation and link formation technique [4] 
to link reps based on addresses reported in their employment 
records (see Section 4). Since standard data pre-processing 
techniques are not well suited for detecting dynamic patterns, we 
developed a novel technique to find tribes by assessing the 
significance of overlap in job histories between two reps. (see 
Section 5). 

Because market conditions and corporate cultures vary widely 
across time and geography, it is imperative to adjust our risk 
measures to accurately reflect the risk environment in a particular 
branch or for a particular rep.  For example, when the market is 
tight, firms may be under greater pressure to meet or surpass their 
goals.  This pressure may manifest itself in an increased 
willingness to push the limits of misconduct. We show in 
Section 6 how normalization utilizing demographic and historical 
information can be used to account for variations in the risk 
environment.  

To be of use to NASD, the risk dimensions of past behavior, 
social structure, and risk environment must be combined into an 
interpretable statistical model that captures the interactions 
between these effects.  We utilize a relational probability tree 
(RPT) for this purpose [7].  Along with identifying high-risk 

entities, we can use these models to evaluate the efficacy of our 
data-preprocessing techniques.  The details of the RPT and results 
of our evaluation are described in Section 7.  

4. INFERRING BRANCH LOCATIONS 
Since firms are often too large to develop an accurate view of the 
social relationships between brokers, we sought to link reps 
though employment at branch offices within each firm. Each 
employment record for a rep contained a self-reported address of 
employment.  Unfortunately, since the addresses are self-reported, 
there were very few exact matches to known branch addresses 
necessitating the approach described below. NASD recently began 
requiring firms to provide additional detailed information about 
branch affiliations and demographics, and we look forward to 
incorporating this information into future analyses. 

To get a “fuzzy” match between reps and branches, we used an 
algorithm based on string edit distance to determine the similarity 
between two addresses [6].  This algorithm assigns one point for 
each addition, subtraction, or substitution of a letter between the 
text strings.  Since there are many ways to score points (e.g., a 
subtraction may look like many substitutions), the string edit 
distance is the minimum possible score between two strings.  

We considered addresses in two parts: (1) the street address and 
(2) city, state, zip. There are a variety of ways to express standard 
street address components.  ‘North’ may become ‘N’, ‘N.’ or even 
‘NO’.  A branch that is located on ‘First Street’ may have 
employees that report their address as ‘1st Street’, ‘First St.,’ ‘1st 
St.’ etc.  To account for these variations in street address, we 
started with the basic string edit distance and subtracted the 
difference in length for the two strings, effectively discounting the 
effect of abbreviations.  We then divided the score by the 
minimum string length.  The resulting score measured the 
percentage of characters that varied from one string to the second.  

Because the city-state-zip strings have fewer common 
abbreviations, we chose not to subtract the difference in string 
length in this case.  The intuition behind this is that any error in 
city, state, or zip code is probably a significant mismatch and 
should count for more.  However, if the street address is identical 
but the city, state and zip are only slightly different then we would 
also like to match these addresses.  To determine a final score we 
added the street score to the city score.  If the final score was 
below our threshold of 0.28, then the addresses were a match.  
The threshold was chosen to minimize the number of false 
positives, i.e., distinct branches that are incorrectly grouped by the 
algorithm. Examples of this approach are shown in Table 1. 
Using a threshold of 0.28, we were able to successfully match 
70% (~3.35 million) of the employment records to recorded 
branches.  The remaining 30% (~1.43 million) of employment 
records could not be matched to existing branches.  A few 
possible causes for this include branches that have moved 
locations over time, reps that report a home address or other non-
branch address, data entry errors, or multiple addresses for the 
same location.  In many cases there were many records with the 
same unmatched address.  Using these unique addresses (as 
identified by our string matching algorithm), we inferred the 
existence of a branch at that address.  We call these branches 
inferred branches.  We then used our matching algorithm to 
match the remaining 30% of the records. There were 431,895 
branches recorded in the original data.  To those we added 
315,761 inferred branches, for a total of 747,656 branches.  Of the 
315,761 inferred branches, 158,438 have a single employee. 



 

 

Table 1: Example branch address matches produced by our 
modified string edit distance algorithm. 

Successful Matches From Algorithm (True Positives) 
201 E. Main St., Washington, IN, 47501 
201 E. Main St. Ste. 305, Washington, IN, 47501 
201 E Main Street Suite 305, Washington, IN, 47501 
Incorrect Non-Matches (False Negatives) 

110 Wall Street , NEW YORK, NY, 10005 
110 Wall Street , NEW YORK CITY, NY, 10005 
110 Wall Street , 22ND FLOOR NEW YORK, NY, 10005 

Correct Non-Matches (True Negatives) 
110 Wall Street , MANHATTAN, NY 10005  
110 Wall Street , BROOKLYN, NY, 10005 
110 Wall Street , BOCA RATON, FL, 33432 

 

5. IDENTIFYING TRIBES 
In addition to the social structure provided by branch associations, 
we can utilize the dynamic nature of the data to identify other 
relations between reps. NASD experts have long suspected the 
existence of a pattern of behavior among reps where a group of 
high-risk reps, called tribes, will move together from branch 
office to branch office seeking “greener pastures” to continue 
their joint activities, which may include perpetrating fraud.  We 
developed a method to discover such tribes by identifying small 
groups that move together anomalously across multiple jobs. 
Reps can share multiple jobs by chance, due to firm acquisitions, 
and movement between firms and branches in the same 
geographic region. We wish to factor out these trends to identify 
groups that stay together intentionally, sharing sequences of jobs 
that are unlikely to arise by chance alone. Of course, low-risk reps 
can also move together in groups; a group of friends might recruit 
one another as they move across the industry. To estimate the risk 
of the tribes we identify, we will use the risk scores on reps 
described in Section 6.  We expect a high-quality set of identified 
tribes to be homogeneous with respect to their risk scores, 
containing either mostly high-risk reps or mostly low-risk reps.  
For our purposes, a tribe is a group of reps that have significantly 
similar job sequences within the industry. The tribe-finding 
algorithm is described in more detail in a separate paper [3], but 
an overview follows. We enumerate all pairs of reps in the 
database that have ever worked together, and for each pair we 
record the jobs where they have intersected. Our task is to decide 
which pairs are interesting—ideally, to distinguish which reps are 
choosing to be at the same jobs, versus which reps just happen to 
intersect in their careers.  Once we determine these significant 
pairs, we connect them to form tribes.  The reps in a significant 
pair, plus any other reps connected to them through such pairs, are 
considered a tribe. 
We use a probabilistic model to decide which pairs are interesting 
(i.e., significant) under a null hypothesis of reps moving 
independently. The key idea of the model is this: Some industry 
patterns are common, whether because they reflect typical career 
sequences, or else because whole branches may open, close, 
merge, or be bought. From the data, we estimate a model 
describing this background pattern of normal movement.  For 
each pair of branches, it computes the percentage of reps that 
worked at one branch that eventually worked at the other branch 
as well. The employment data confirms that there are strong such 
trends among branches: Most small branches (90%), and many 

large ones (30%), are associated with some destination at which a 
majority of their employees later work.  

To score a pair of reps, we look at the sequence of jobs they share 
and calculate the likelihood of that sequence according to the 
model. We set a threshold, depending on how many tribes we 
want to produce, and all pairs with scores beyond the threshold 
are rated significant. 

Since the real-world employment data has many instances of reps 
holding multiple jobs simultaneously, as well as gaps in 
employment records, the model was designed to handle these 
situations.  It allows for situations where reps in a pair take any 
number of different jobs, then come back together.  The model 
ignores employment durations and dates. Note that in computing 
probabilities, all that matters is the ordered sequence of jobs. 

We validated the tribes we identified using risk scores of reps and 
zip codes of branches. We found that the set of reps that are in 
tribes is strongly enriched for high-risk scores: For a set of tribes 
containing 1600 reps, the average risk score is 8.0, compared to a 
global average of 0.7.  Pairs of reps that are rated significant are 
more likely to move geographically together than other pairs that 
overlap by chance: They work in jobs in an average of 2.85 
different zip codes, whereas the average among all candidate pairs 
is 1.90.  Finally, the tribes are homogenous for disclosure scores.  
The variance within each tribe is low (i.e., each tribe is 
homogenous), and the variance among (average) tribe scores is 
high (i.e., some tribes have high scores, while some have low).  
We established this by permuting the assignment of the reps 
within tribes, estimating p< 0.001 for both measures above. 

Figure 3 displays the career histories of two potential tribes.  Each 
of these tribes consists of a single pair of reps. The tribe in 
Figure 3(a) was scored as highly significant, while the tribe in 
Figure 3(b), even though it has a long history together, appears 
unremarkable and was scored as not significant. It is fortuitous 
that the brokers' start dates match, since the model does not take 
timing information into account. In the significant case, we 
interpret the synchronized movements as evidence that the brokers 
are coordinating their job changes.  However, for the case rated 
insignificant, it is more likely that these transitions are sudden 
mass movements.  The brokers from the significant pair have 
disclosure scores of 18 and 24, respectively, primarily since in 
April 1996 they were both fired (disclosures show an Internal 
Review and a Termination for each).  One of the brokers from the 
non-significant pair has no disclosures, while the other was fired 
in 1997 for “diversion of profitable trades to personal” and 
received a score of 12 for this. In this figure, the names of the 
firms have been anonymized. 

Tribes can be useful for improving fraud detection in two ways. 
First, the tribes themselves, along with the corresponding risk 
scores, can direct NASD examiners towards groups of reps that 
merit investigation.  It may also be possible to identify similarities 
among the tribes and identify possible tribes before branch 
movement is initiated.  Second, due to the homogeneity of the risk 
scores within a tribe, we would like to incorporate these tribe 
relations into a combined model of risk as described in Section 7. 

We conducted a preliminary experiment to assess the value of 
using tribes to predict the risk scores of reps. First, we generated a 
large set of tribes, containing over 33,000 reps, by adjusting the 
significance threshold to be quite liberal. We converted the tribes 
into an attribute on reps by computing, for each rep, the average 
risk score of the other members of its tribe including past history 



 

 

up to but not including the current year. Then we constructed two 
training sets of reps. The first contained a mixture of reps with 
and without tribe attributes and the second contained only reps 
with defined tribe attributes. Both training sets were constructed 
such that half of the reps were labeled “high-risk” and the other 
half were labeled “low-risk”. The scores of simple predictive rules 
using only the tribe attribute are shown in Table 2. These scores 
confirm that the tribes contain predictive information. Section 7 
contains more information about the modeling process. 

        
Figure 3: Two examples of overlapping job histories 
indicative of tribes. (a) An example of a significant overlap 
in job histories (low background probability). (b) Example 
of non-significant overlap  (high background probability).  
Names of firms have been anonymized. Firm sizes are in 
parentheses.  Edge labels display transition percentages and 
start dates. Bold edges indicate both reps changing 
employment at the same time. 

Table 2: Using tribes to predict risk. 

 Default Mixture Only Tribes 

Accuracy 0.50 0.62 0.67 

Area Under ROC 0.50 0.65 0.69 

6. NORMALIZED RISK SCORES 
In order to derive a measure of risk for reps and branches, we rely 
heavily on disclosure information. Disclosures are a useful 
indicator of risk since they document and encapsulate past 
questionable behavior of reps. Individuals that have engaged in 
fraudulent activity in the past are more likely to exhibit similar 
behavior in the future than are those with a clean history. 
Similarly, branches that employ reps with high risk should be 
deemed risky themselves.  In other words, if many high-risk reps 

work at the same branch, then that branch might be more likely to 
be a source of fraudulent activity in the future.  

We developed a strategy to aggregate this information into a 
useful statistic and used this statistic to assign an appropriate 
normalized class label to reps and branches.  Disclosures rates are 
highly variable among reps. Disclosures are never filed on the 
vast majority of reps while some reps have many disclosures.  
Additionally, the frequency with which disclosures occur varies 
across time, geography, and types of branches.  We partitioned the 
set of reps and branches into categories based on these three 
attributes and computed a risk score on reps and branches 
normalized by their respective category. 

6.1 Normalization Categories 
6.1.1 Normalization over Time 
The first normalization category is temporal—by year.  We 
limited the period under consideration to the years 1995 to 2005.  
This range was selected because we are mostly concerned with the 
immediate past, and because NASD has initiated much more 
comprehensive oversight and data collection procedures over that 
time.  Note that 2006 is not considered since we only have partial 
data for that year. Figure 4 illustrates the variability of disclosures 
by year and justifies the need for temporal normalization.  The 
distribution is bimodal with peaks during 1996-1997 and 2002. 

 
Figure 4: Disclosure rates by year 

6.1.2 Normalization over Geography 
The second category for normalization is geographical location.  
We partitioned branches into ten geographical regions based on 
postal code.  The first digit of a postal code represents a group of 
U.S. states that designates a population region.  In the event that a 
branch lacks this information, we assign the branch to a 
geographical location by taking the majority vote from the 
branch’s employees’ addresses. Figure 5 depicts a map of the 
United States color-coded by our geographical categories.  These 
location boundaries provide relatively equal numbers of branches 
within each geographical category. Note that since reps can work 
for multiple branches simultaneously, it is possible for a rep to 
appear in more than one location.  

 
Figure 5: Zip-code regions 

(a) (b) 



 

 

6.1.3 Normalization over Branch Demographics 
The third and final normalization category identifies types of 
branches.  We considered two distinguishing features of branches: 
the size of the branch and the size of the branch’s firm (where size 
denotes the number of employed reps).  The size of a branch/firm 
is the total number of unique individuals employed at the 
branch/firm within the period 1995-2005.  We constructed 
partitions on these two dimensions that group branches according 
to size. Table 3 presents the branch typology along with the 
density of each class. Type 1 branches have a single rep 
associated with firms that employ no more than five thousand 
individuals.  Type 2 comprises branches with a single rep for 
larger firms (more than five thousand reps). Types 3 and 4 contain 
medium-sized branches (two to one hundred employed reps), and 
type 5 encompasses all remaining large branches (employing 
more than one hundred reps).  

We have data on a total of 449,781 branches (both actual and 
inferred) that were open during our time frame, and the number of 
branches within each type varies.  Additionally, for all branch 
types, we have a total of 2,329,113 distinct individuals that were 
employed in our time frame (see Table 3).  Since reps can work 
for multiple branches simultaneously, it is possible for the same 
individual to appear under multiple branch types. This accounts 
for the larger number appearing in Table 3. We found that roughly 
28% of the employee count between 1995-2005 is attributable to 
multiple employments.  We address the problem of attributing 
disclosures of reps that work several jobs simultaneously below. 
Table 3: Description of demographic categories for branches  

Branch 
Type 

Rep 
Threshold 

Firm Size 
Threshold 

Number of 
Branches 

Number of 
Reps 

1 r=1 f < 5000 91,556 84,185 

2 r=1 5000 < f 148,954 136,513 

3 1 < r < 100 f < 5000 76,111 451,922 

4 1 < r < 100 5000 < f 128,396 790,491 

5 r >100 - 4,791 1,512,167 

  Total 449,781 2,975,278 

 

6.2 Computing Risk Scores 
We utilized a weighted disclosure score as a measure of risk for 
reps and branches. Based on input from experts at NASD, we 
assigned a weight to each disclosure type based on its relative 
severity. Regulatory action and termination disclosures are 
deemed the worst type of disclosure while a judgment lien is 
ignored entirely.  To compute a risk score for a rep in a given 
year, we sum the weights of each disclosure attributed to the rep 
in that year. Branch scores are determined from the scores of all 
reps working at that branch. 

We assigned each branch to its appropriate normalization bin 
based on its branch type and location. Then, for each bin, we 
computed the disclosure score of each branch and rep as described 
above.  This gives us distributions of rep disclosure scores and 
branch disclosure scores (averaged over employed reps) for each 
of our normalized categories of individual entities. Because an 
individual rep can work for multiple branches concurrently, it is 
important to describe how we handle multi-branch employment of 
reps. For reps, we assign the score in its entirety, unless multiple 

branches are categorized into the same bin. For branches, we 
designate fractional disclosure scores to each branch. This 
prevents reps from concealing their activity by working for many 
branches.  

Finally, we constructed a binary class label identifying entities as 
“high risk” based on the normalized disclosure score. We 
compared the score of each entity to its expected distribution 
based on its normalization bin. Reps or branches were identified 
as being high risk (positive class label) if they satisfied the 
following two criteria simultaneously:  

1. The score was at least in the 95th percentile of all 
reps/branches within the category. 

2. The score was above the median for all reps/branches 
with a non-zero score within the category. 

These two criteria ensure that the rep or branch is among the 
worst of all similar entities, but in order to limit the number, we 
required that they be worse than half of those entities with a non-
zero score. However, if fewer than 5% of the reps in a category 
have scores above the median, we assign all the reps with scores 
above the median to the high-risk group. The remaining reps and 
branches were assigned a “low risk” label (negative class label). 

We present data for the normalized results for reps in 2005 in 
Figure 6. When looking at this figure, each number represents one 
of the normalized bins.  The value of the number indicates the 
bin’s geographical location, the shading of the number represents 
the branch type associated with the bin, and the size of the number 
is indicative of the median non-zero disclosure score for the bin.  
The position of each number is the log of the total number of reps 
in the bin against the percent of reps with the disclosure score.  

As an example, the 8 in the upper-left corner of Figure 6 
represents the bin of small branches–small firms within the 8th 
geographical region.  This number’s size is roughly average 
amongst the other numbers indicating that the median of the 
disclosure score for this bin is roughly average overall.  This bin 
also has the highest percentage of reps with a disclosure score.  

 
Figure 6: Variability of the disclosure scores on reps 
across branch demographics and regions. The larger 
plotted numerals indicate bins with higher median 
scores.  

 



 

 

7. MODELING RISK 
The purpose of the evaluation described in this section is two-
fold. We would like to demonstrate that we can automatically 
learn interpretable models of high-risk entities and we would like 
to demonstrate the effectiveness of our data processing 
approaches. We demonstrate the former by showing models 
automatically learned from data and demonstrate the latter by 
comparing our models to models learned for non-normalized class 
labels. This analysis was performed using PROXIMITY2, an open-
source system for relational knowledge discovery designed and 
implemented by the Knowledge Discovery Laboratory in the 
Department of Computer Science at the University of 
Massachusetts Amherst. 

7.1 The Relational Probability Tree 
We utilized the relational probability tree (RPT) algorithm to 
learn models of high-risk reps and branches [7].  The RPT is 
designed to automatically construct and search over possible 
aggregations of heterogeneous training data.  In general, instances 
drawn from relational data violate the independent and identically 
distributed (i.i.d) assumption common to most non-relational 
knowledge discovery techniques. The RPT applies standard 
aggregations COUNT, AVERAGE, MODE, etc. to effectively 
“propositionalize” data before selecting features to be included in 
the model.  To find the best feature, the RPT  searches over values 
and thresholds for each aggregator.  For example, if we are 
aggregating over disclosures filed on reps then we might consider 
a feature such as COUNT(Disclosure.type=Bankruptcy) > 1 
where the type and number of disclosures is determined by the 
algorithm. 

The RPT is a type of probability estimation tree for relational data 
[9]. A probability estimation tree is similar to a classification tree, 
however the leaves contain a probability distribution rather than a 
class label assignment. Tree-based representations are often 
chosen for ease of interpretation and the ability to extract 
meaningful rules for future use.  During the training phase, the 
RPT algorithm learns the probability distributions for each leaf 
and the features for each node in the tree. These tree models can 
then be applied to unseen test data to determine the performance 
of the algorithm. 

7.2 Methodology 
The class label we chose for our evaluation was the normalized 
class label described in Section 6.  As inputs, we use the attributes 
and structure of related entities in the network along with the 
intrinsic attributes on the rep or branch being evaluated.  Since we 
are interested in predicting future behavior, our model uses 
information up to the present year to predict normalized class 
labels for the next year. Our training collection consists of reps 
and branches that were active in 2003 and 2004.  We include past 
information up to and including 2003 as input to our model to 
predict high-risk status in 2004.  The testing collection follows a 
similar protocol but for the years 2004 and 2005. The past 
information includes the class label from previous years. 

To generate the pool of instances from which to draw our training 
and test sets, we utilized the QGRAPH language implemented in 
PROXIMITY. QGRAPH is a graphical query language designed 
especially for querying large network datasets [1].  The queries 

                                                                    
2 http://kdl.cs.umass.edu/proximity 

used to gather instances from the database for both reps and 
branches are shown in Figure 7 and Figure 8, respectively. Each 
query returns a portion of the entire data graph called a subgraph.  
These subgraphs define the related entities that are considered by 
the RPT for feature creation. For reps, we queried for only the 
reps themselves, their current branch affiliation, past branch 
affiliations (if any), and any disclosure history.  For branches, we 
queried for the branch itself and all reps currently working at that 
branch and their work history (past branches and disclosures). 

By definition, our normalized class label can only occur on at 
most 5% of the reps or branches in a given bin.  To avoid any 
floor effects due to such a high default accuracy, we created 
samples that contained all of the positive instances returned by our 
query and undersampled the negative class so that the sample 
contained an equal number of positive and negative instances. 
Provost and Fawcett show that this procedure does not 
significantly affect the rankings produced by the learned model 
[1]. We will evaluate our models primarily using the area under 
the ROC curve (AUC) metric.  To maintain disjoint training and 
test sets, we removed any positive instances from the test set that 
also appeared in the training set.  Negatives were also sampled to 
avoid overlap between training and test. 

 
Figure 7: QGraph query for reps. This query returns all reps 
their branch affiliation in the year t, any past branches they 

have also worked at, and any past disclosures filed on the rep. 

 
Figure 8: QGraph query for branches.  This query returns all 

branches active in the given year t, all reps working at that 
branch during that time, any past branches those reps have 

worked at, and any past disclosures filed on the rep. 

7.3 Empirical Evaluation 
In order to assess the effect of normalization on our models, we 
considered two different class labels.  The first class label is the 
normalized class label described in Section 6. The second is a 
non-normalized class label that was based on the top 5% of high-
risk reps or branches without considering branch type and region.  
In addition, for each class label we considered two types of 
training sets for a total of four experiments each for branches and 
reps. We learned a single model trained on the combination of all 
the bins for both the normalized and non-normalized class label.  
We also learned a set of stratified models that were trained on 
each bin individually.  
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Figure 9: An example learned model of risk using the relational probability tree algorithm in PROXIMITY. Thresholds and values of 

the features have been removed to protect sensitive information.  The leaf nodes indicate the relative risk of registered 
representatives that fall into that leaf. More black indicates higher risk. The number of reps in each leaf is shown in parentheses. 

Each of the RPTs was given attributes on reps (e.g., age, sex), 
branches, and disclosures (e.g., disclosure_type) as input. As 
described in Section 5, reps that were a part of a tribe had an 
additional attribute describing the average disclosure score of the 
other reps in the tribe. Although the tribe attributes are predictive 
of risk, none of these attributes were chosen in any of the models. 
We attribute this to the relative sparseness of tribes in the entire 
data. Tribes are definitely useful as a local pattern, but are not 
sufficiently strong to contribute to global models.  
An example of a learned tree model for reps using a normalized 
class label is shown in Figure 9. The features selected in these 
trees include the past values of the class label and attributes on 
related entities such as disclosures and past branches. Specific 
thresholds and values have been removed to avoid revealing 
sensitive information. An example model for branches is not 
shown here, however the structure of the models and the features 
selected are similar to the rep model. 

ROC curves for our learned models are shown in Figure 10.  The 
performance of each of the models is summarized in Table 4. The 
stratified models were combined from models learned on each bin 
individually.  The stratified models perform worse than either of 
the models learned across the entire data.  The lack of calibration 
between the predicted probabilities of models learned on different 
bins would account for the poor showing on AUC when compared 
to models learned on the entire data set.  Unfortunately, accuracy 
(ACC) scores also suffer with models learned on individual bins.  
We attribute this effect to the reduction in sample size resulting 
from the stratification.  Most bins have only a few positive 
instances, making it difficult to learn a model that generalizes well 
to the test sample.  
The highest-risk branches according to the non-normalized class 
labels are single person branches with a small number of 
disclosures.  This means that some branches with relatively minor 
disclosure problems are ranked very highly by the non-normalized 
disclosure score.  Other branches, perhaps with a larger number of 
serious disclosures but also with a larger number of reps, are 
pushed further down the list due the average disclosure score 
being low.  This is the ideal situation for normalization and our 
normalized class label is designed to capture this concept. The 

branches with serious disclosures should fall near the top of their 
respective bin and branches with only minor disclosures should 
fall near the bottom of their bins.  Assuming there are clear 
differences between the high-risk and low-risk branches, the 
normalized class label allows for a higher performing model. In 
contrast, modeling the non-normalized class label for reps 
produces models that perform as well the models for the 
normalized class label.  Since each rep is responsible for their 
disclosures, there is no need to average over multiple entities.  
Under these conditions, the high-risk reps, regardless of bin, 
should have high disclosure scores and be the most probable to 
have future serious disclosures.  The effect of normalization in 
this case was to exclude reps that should have been high-risk 
based on raw disclosure score but did not receive a positive 
normalized class label because they were below the 95th 
percentile in their bin. 

An interesting normalization approach to consider in the future 
would be to have a dynamic threshold for each bin. Rather than 
taking the top 5% of each bin, it would be possible to set a 
threshold based on the overall number of disclosures appearing in 
that bin.  For example, since disclosures are more prevalent in the 
smaller branches we should consider a larger percentage of small 
branches as high risk when creating normalized class labels.  By 
varying thresholds in this way, each bin receives the same weight 
in the normalized class label as it carries in the original data. This 
may lead to improvements in modeling high-risk individuals and 
branches.  

Table 4: Summary of Model Performance 

  Branch Rep 

  Full Stratified Full Stratified 

Normalized 0.77 0.62 0.80 0.69 
AUC 

Non-normalized 0.72 0.62 0.79 0.70 
Normalized 0.73 0.59 0.73 0.67 

ACC 
Non-normalized 0.66 0.60 0.74 0.68 

 



 

 

 
Figure 10: ROC curves for branches and reps. Results are 

summarized in Table 4.  

8. DISCUSSION 
As our results from the previous section showed, past behavior, 
social structure, and normalized risk assessments can be used as a 
foundation from which to learn high-performing models from data 
automatically.  As our learned models show, past behavior is a 
strong indicator of future risk.  Features aggregating past 
normalized disclosure scores, past disclosures, and past branch 
history are prominent in the learned models. 

The identification of social structure was also useful in the 
modeling process. The branch entities created using consolidation 
and link formation techniques were foundational components in 
each aspect of our work. Despite not being chosen as a feature in 
our learned models, the groups of reps we identified as tribes 
intrigued the experts at NASD. 
Based on the results of our experiments, normalization should be 
used with care.  Normalized class labels aided in the identification 
of high-risk branches and should be considered as a data pre-
processing technique in the future. As we saw with the rep 
models, creating a normalized class label did not always improve 
the performance of the models. There is also the potential to 
increase the variance of the model when sample size is small, as 
we saw with our stratified models.  

In the future, we would like to develop additional methods to 
better utilize the temporal structure present in the data. It may be 
possible to improve tribe detection with a deeper understanding of 
the patterns of mergers and acquisitions among firms.  An 
additional consideration for future research is performing 
collective inference with branch and rep models to better utilize 
the current estimates of risk to improve model performance.  
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