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Macrobehaviorsin complex adaptive systems are high-
level behaviors that arise from a combination of low-level in-
teractions and characteristics of individuals. Over time, indi-
viduals participating in these complex systems make choices
that influence the behavior of other individuals. These types
of interactions are present in both human and computational
systems. For example, complex interactive behaviors are
demonstrated as audience members enter a talk (Schelling
1978) and software agents negotiate over shared resources
(Klein, Metzler, & Bar-Yam 2005). Macrobehaviors arise
when groups or aggregations of individuals develop group-
level structure through interactions of individual character-
istics and actions.

One complex system that is familiar to academics is the
pattern of citations in a given field or subfield of science
(e.g., (McGovernet al. 2003)). Citation networks ex-
hibit many interesting behaviors: researchers rise and fall
in prominence, papers get cited at different rates at different
times, research topics become popular then fade out over
time, etc. One example of a macrobehavior is the rise to
prominence and ongoing success of a research group. A
typical university research group contains a few faculty (usu-
ally one or two), graduates students studying with those fac-
ulty, and perhaps additional research or technical staff. Pre-
sumably, these researchers have joined together because of
shared research interests and the opportunity to build ideas
collectively. Citation frequency of both the individual re-
searchers and the whole research group depend on the rich-
ness of the interactions within the group. Intuitively, we rec-
ognize that groups with the right mix of people and talents
will tend to be cited more than the sum of those same indi-
viduals working separately.

Macrobehaviors, also calledemergentbehaviors, can lead
to mutually enhanced behavior (as in the case of research
groups), mutually detrimental behavior, or simply neutral
behavior that is otherwise remarkable to system observers.
Mutually detrimental behaviors, often calledsocial patholo-
gies or social dilemmas, are of particular interest to re-
searchers. Jensen and Lesser define a social pathology as
a “system behavior in which two or more agents interact
such that improvements in local performance do not improve
system performance” (Jensen & Lesser 2002). Examples
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of social pathologies in computational systems include the
“tragedy of the commons” (Turner 1993) and resource os-
cillation (Klein, Metzler, & Bar-Yam 2005).

Due to the size and complexity of real systems, it is often
difficult to identify and predict the occurrence of macrobe-
haviors. These behaviors arise from transient combinations
of local characteristics, the structure of the network guid-
ing the interaction, and adaptations of surrounding entities.
Models that are able to represent these behavioral factors
would provide a significant improvement for the analysis of
complex systems. In this thesis, I propose to extend cur-
rent techniques for learning inrelational data to develop
(1) models of group structure and attributes and (2) flexible
models of temporal dependencies. These two contributions
will provide a foundation for models of macrobehaviors that
are understandable and easily learned from data.

Recent work in complex network analysis and modeling
(e.g., (Watts & Strogatz 1998; Kleinberg 2001)) has led to
the adoption of a graph with attributes as the primary choice
for representing complex systems. A graph effectively cap-
tures the local interactions and can be abstracted to bet-
ter understand macrobehaviors in sections of the network.
Much of the work done recently on learning models ofre-
lational datacan be applied to graphs with attributes. Re-
lational data represent interrelated entities such as people,
places, things and events; their defining characteristics (of-
ten called attributes); and the structure capturing the rela-
tionships between these entities. Examples of relational data
include citation data; the network of Hollywood movies, ac-
tors, and studios; and hyper-linked data found on the Inter-
net. Much of the work with relational data has concentrated
on learning models about single entities either individually
(e.g., (Nevilleet al. 2003)) or collectively (e.g, (Taskar,
Abbeel, & Koller 2002; Jensen, Neville, & Gallagher 2004;
Neville & Jensen 2004)). Recent work has shown that hy-
pothesizing the existence of groups in data can lead to in-
creased performance inferring individual attributes (Neville
& Jensen 2005). However, this work is not able to model the
characteristics and structure of the groups themselves.

In order to represent macrobehaviors effectively, models
must be able to consider the attributes and structure of an
aggregation of interrelated entities as a whole rather than a
collection of individuals. This is a bottom up approach, in-
ferring the attributes of groups from the structure of the in-



dividual interactions. From a perspective of machine learn-
ing, we are interested in variables of the groups (i.e., an ag-
gregation of entities) themselves rather than variables of in-
dividual objects. Consider the research group example: It
may be possible to identify research groups solely on the
network structure among co-authors (i.e., individuals tend
to coauthor within the groups more than without); however,
the best model of a research group would also consider the
roles of individuals (student, faculty, etc.) and constraints
on the composition of the groups such as a limit on the ratio
of faculty to students in the group. In order to better model
groups, I will develop a new class of compositional models
for relational data by extending the feature space considered
by the relational probability tree(Neville et al. 2003). In
addition to searching over the space of individual attributes
and aggregations of individuals, these compositional mod-
els will consider features that capture the composition of the
network and attribute relationships among individuals.

Because many complex systems exhibit dynamic behav-
iors, a necessary component of this work will be to introduce
flexible, easy-to-learn models of temporal phenomena. Cur-
rent methods for relational data are limiteda priori to a fixed
set of temporal relations (e.g., a single past time step) (Sang-
hai, Domingos, & Weld 2003; 2005). Emergent behaviors
often arise from the interactions of individual behaviors at
various time scales and rates. This necessitates flexible mod-
els that are able to identify which time scales and temporal
intervals are most relevant for detecting and predicting mac-
robehaviors in the system being studied. To address this, I
propose a probability-tree algorithm based on the relational
probability tree (Nevilleet al. 2003) that is able to search
over aggregations of objects at multiple scales and intervals
to identify the most predictive features.

Both compositional and temporal features search over ag-
gregations at different levels of granularity in the data. This
feature-space expansion incurs a burden in both variance and
efficiency of the models and may introduce feature selec-
tion biases. For a model to be successful, any burdens must
be offset by the improved probability estimation of the new
models and any biases of the model must be addressed by
corrected feature selection techniques.

A primary goal of this work is to improve knowledge dis-
covery and data mining tools by developing compact, un-
derstandable models of groups that are applicable to a wide
variety of applications. In prior work, I developed an algo-
rithm that was able to capitalize on group structure in a P2P
file-sharing network by clustering music files that tend to
occur together in users’ file-sharing libraries (Fast, Jensen,
& Levine 2005). By utilizing this structure, we were able
to improve query performance of a standard P2P algorithm.
In addition to P2P networks, this work will be applicable
to citation networks, multi-agent systems such as unmanned
aerial vehicles (UAVs) and other complex systems.

With advances in many fields of distributed computation
including networking and multi-agent systems, there has
been a proliferation of data capturing the behavior of com-
putational complex systems. These datasets are so large and
inherently complex that they are impossible to examine un-
aided. Without better methods for analyzing and interpreting

the behavior of such systems, we risk stagnated development
of new systems. By developing automated tools for the anal-
ysis of macrobehaviors in complex systems, we will be able
to foster the understanding needed to generate advances for
the next generation of computational systems.
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